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SOME PROBLEMS OF CONVECTIVE DIFFUSION TO
A SPHERICAL PARTICLE WITH Pe = 1000

B. M. Abramzon and G. A. Fishbein UDC 532.72

The problem of convective heat and mass exchange during the slow motion of a single drop ina
uniform and a shear stream, as well as during the motion of a gas bubble in a power-law liquid,
is solved using finite-difference methods. :

The determination of the intensity of external heat and mass exchange of a spherical particle under the
conditions of axisymmetric streamline flow is connected with the solution of the equation of convective diffu~
sion

1 4 rz_(zc_ ‘- 1 —a-(sin(:) QQ\__& 9¢ L Ve oC =0 )
r2 Or or r’sin® 00 00 ] 2 T or r 00
with the following boundary conditions;
Chor =1 Clun=0. @)

In Eq. (1) the components Vr and V@ of the liguid velocity are expressed through the stream function by
the equations
1 oY 1 ov

Vi=——— ——; Vo= .
r’sin® 060 © rsin® or

In the present report Eq. (1) is analyzed for several model flows pertaining to cases of slow streamline
flow over a particle. Since the Schmidt numbers for real liquids have the order of 10°, the values of the Peclet
number lie in the range of 1 = Pe = 1000 even for small Reynolds numbers (Re £ 1).
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Fig. 1. Concentration field around a spherical particle
with Pe = 100 for different models of streamline flow: a)
a solid particle in a Stokes stream; b) a gas bubble with
Re « 1; c,d) a solid particle ina shear stream (¢ — o > 0;
d— o <0),

Analytical solutions of this problem are known in the literature, cbtained for the limiting cases of small
Peclet numbers by the method of joining of asymptotic expansions [1,2] and for very large Pe by the method of
the diffusional boundary layer [3-9]. A comparison of these approximate solutions with the results of numeri-
cal calculations carried out in {10] on the example of the problem of diffusion to a particle in a Stokes flow
showed that the method of joining of agymptotic expansions can be used only for Pe € 0,5. As for larger Peclet
numbers, the method of the diffusional boundary layer gives acceptable results beginning with Pe > 1000,

The approximate analytical methods prove to be unacceptable in the intermediate regionof Peclet numbers.
We studied this regionof Peclet numbers using the finite~difference method used earlier in 10].

The cases of the mass exchange of a drop during slow motionin a uniform and a shear stream are ana-
lyzed. The effect of the non-Newtonian properties of the liquid on the process of mass exchange of a gas bubble
is also studied.

The effect of the flow model on the nature of the diffusional interaction of a particle with a stream can be
analyzed qualitatively by considering the concentration fields near the sphere (Fig. 1). The process of mass
exchange is characterized quantitatively by the values of the local and average Sherwood numbers

ac

She:—2(—) ; Sh=~;—SShesin®d9. ®)
r /r=1
0

The results of the calculations for the types of flow under consideration are presented in Figs. 2 and 3 in
the form of dependences of Shg and Sh on Pe and other parameters of the problem.

1., Mass Transfer to a Drop with Re < 1

In this case the liquid flow is described by the Hadamard — Rybchinskii stream function
1 m+2 B 1 ) s
V= —{r2— r — | sin?6
) 2 ( 2u-+2 ™ -2 r @

and the solution of the diffusional problem depends on two parameters: the Peclet number and the viscosity
ratio u.
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Fig. 2. Local values of Sherwood number with Pe =100: a)
flow over a drop by a uniform stream; b) flow over a drop by a
shear stream with a > 0,
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Fig. 3. Dependence of average Sherwood number on Peclet
number: a) slow streamline flow over a drop; b) flow over a
gas bubble by a stream of power-law liquid.

The dependence Shg (®) for Pe = 100 with different u is presented in Fig. 2a. With the transition from a
solid sphere (u =) to a gas bubble (1 = 0) one observes a considerable increase in the intensity of mass ex-
change at the frontal part of the sphere and a simultaneous decrease in this value in the rear region. In this
case, as seen from Fig. la,b, the zone of the main concentration drop narrows in the front part of the sphere
and the carrying away of material in the back section is strengthened. This is due to the increase in the role of
the convective component of the diffusional flux owing to an increase inthe liquid velocity near the surface of
the particle with a decrease in yu.

The dependence of the average values of the Sherwood number on the Peclet number for different y is
given in Fig, 3a. The dashed curves are constructed for a solid sphere and a gas bubble from the following
equations of boundary-layer theory [3]

Sh=0.991Pe!/® ( for u= o), ©)

0,65
Sh=——'—’rpel/2. 6
Vitu ©

We note that the solutions (5) and (6) give somewhat understated resuits for the Sherwood number. This
is connected with the fact that the method of linearization of the stream function used in [3] leads to understated
values of the tangential velocity component near the surface of the particle. The use of a more exact expression
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for the stream function near the surface of a solid sphere [4] gives the dependence
Sh = 0.992 -- 0,991 Pe!/3, (7)

which is found to be in good agreement with the results of a numerical solution for Pe > 10,

. Ancother defect of the-boundary-layer solution (6) for a drop is.the impossibility of using it for large u
[5, 6] (@ limiting transitionto (5) as u — = is absent). To find Sh for intermediate values of u one can use the
following approximate equation:
Sh(0) + p.Sh (e0)
l+p
Here Sh(0) and Sh(x) are the values of the Sherwood number with a given Pe for a bubble and a solid sphere.

Sh(p) = ®)

2. Mass Transfer to a Drop in a Shear Stream

An example of uniform axisymmetric shear flow is the motion of a liquid near a particle which, being
fully entrained by the stream, moves along the axis of a convergent {divergent) channel, The stream function
for this type of flow around a liquid drop was obtained in Taylor's report [9]:

Bu+2 - 3u 1y .,
— | sin® @ cos B.
e BT ) ®

Y= (r3—

In this expression the stream function is written in dimensionless form, with the quantity U« = a ¢ being
used as the characteristic scale of the hydrodynamic velocity. The parameter o determines the intensity and
direction of shear. For Pe = @a?/D > 1 the diffusion problem was solved in [7] by the boundary-layer method,
The functions

Sh=2,44Pel/3 { for p= oo), (10)
1.95
Sh= ——_ Pe!/2 1)
VT+p

obtained for the Sherwood number are analogous in structure to Eqs. (5) and (6).

The concentration fields around a solid sphere in a shear stream with Pe =100 and o of different signs
are shown in Fig. 1c,d. Figure lc corresponds to the case of @ > 0 (motion of the particle along the axis of
a convergent channel). Notwithstanding such an important difference in the pattern of the diffusional interac-
tion, the average Sherwood numbers prove to be independent of the sign of . This fact was established ear-
lier in [7] for Pe > 1. The distribution of local coefficients of mass exchange with Pe = 100 and o > 0 is pre~
sented in Fig. 2b for different u. The symmetry of the curves of She (@) relative to the plane ® = 7/2 follows
from Eq. (9) for the stream function.

3. Mass Transfer to a Gas Bubble Moving in a

Power-Law Liquid

The stream function for this case

1

_ L fa_y_ Brn=1)
‘If—z{(r r)

o [rlnr—f— 1 ;—]} sin2@ 12)

6r

was obtained in [8] by the perturbation method and is valid for values of the rheological parameter n not too
different from unity. As follows from this expression, the tangential component of the liquid velocity near the
surface of the bubble increases with a decrease in n. This leads to the fact that the coefficient of mass ex-
change proves to be higher for pseudoplastic liquids and lower for dilatant liquids than for Newtonian liquids
(see Fig. 3b).

For larger Peclet numbers (Pe S 100-1000) our calculations are in satisfactory agreement with the de-
pendence

— 1/2 e
Sh=0.65[1~—4—“uJ VPe. 13)
2n -+ 1

obtained in the approximation of the theory of a diffusional boundary layer [8].
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NOTATION

Pe = 2Ua/D, Peclet number; Shg, local value of Sherwood number; Sh, average value of Sherwood
number; Re = 2Ua/v, Reynolds number; C, relative mass concentration of transported component; r, radial
coordinate (normalized to radius of sphere); ®, angular coordinate; a, radius of sphere; D, coefficient of
diffusion; », coefficient of kinematic viscosity; U, velocity of impinging stream; Ux, scale of velocity in
shear stream; Vy, V@, radial and tangential velocity components; ¥, stream function; u; ratio of coeffi~
cients of dynamic viscosity of liquid in drop and of continuous medium; @, parameter characterizing shear
intensity; n, rheological parameter of power-law liquid. :
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EFFECT OF COMPRESSIBILITY ON THE HYDRODYNAMICS
OF TWO-PHASE FLOWS

V. V. Fisenko and V. I. Sychikov UDC 621.1.013;541.12,012

It is shown that the resistance coefficient of a two-phase one-component mixture depends on the
Mach number over a wide range of parameters.

It is known that in geometrically similar systems the hydrodynamics of single~phase streams is deter-
mined by their compressibility and viscosity.

It has been justified theoretically and confirmed experimentally that the velocity of sound in a two-phase
medium with a definite ratio of the phases can be two orders of magnitude smaller than in the liquid phase and
more than an order of magnitude smaller than the velocity of sound in the gas. Yet, until recently, calculational
models for estimating friction loss in two-phase flow have taken account of the Reynolds number but not the
Mach number. '

It is shown [1] that a one-component two-phase mixture has the greatest compressibility. Experiments
with high-velocity gas flows in long horizontal tubes {2,3] showed that for Mach numbers greater than 0.75-0.85
the resistance coefficient decreases with increasing Mach number and approaches zero as M approaches unity.

In the present paper we present the dependence of the resistance coefficient on the Mach number for the
flow of a two-phase one-component mixture in tubes of constant diameter. We have processed the results of
our experiments on the critical outflow of boiling water through long horizontal tubes with a sharp entrance
edge. The pressure at the entrance to the experimental section varied from 10°to 9.3 -10f N/m?; the tube
diameters were 14.2:107%, 9,8-107%,and 5.8-10"¥m; the relative length was 141 < I/D =< 612; and the mass
flux density varied from 0.567 -10* to 2.983 -10* kg/(m? - sec).
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